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Overview

Why?

Support heterogeneous environments: Linux®) 2.4 e 2.6,
NetBSD®), Plan9®
FreeBSD®), OpenSolaris®

Consolidate work

Legacy Systems

Gradual Upgrade

Service Isolation

Quality of Service

Isolated testing and development
Ease of administration

Ease of relocation and migration
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Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones
\/ Groups processes in “resource containers”
%X Hard to get isolation
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Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones

\/ Groups processes in “resource containers”
%X Hard to get isolation

@ Emulation: QEMU, Bochs

\/ Portable
X Extremely slow

@ Virtualization: VMware®), VirtualPC®

v/ Runs unmodified Operating Systems
% Virtualizing x86 is inefficient

@ User Mode Kernel: User Mode Linux, CoLinux

% Guest runs as a process on the host OS
% Low performance (1/O, context switches)

@ Paravirtualization: Xen®), Denali

\/ Excellent performance
% Requires port to special architecture
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Advantages of Virtualization

Advantages

For Administrators
@ Service Isolation, minimizing damages
@ Failure Isolation
@ Ease of Administration

@ Quality of Service enforcement

For Hosting providers and datacenters

o Offer “Virtual Private Server” services

@ Raise Aggregated Value
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Advantages of Virtualization

Costs!

Purchase or rent of equipments
Rack Space

Colocation costs

Energy Consumption

Downtime



Overview

Xen architecture

Xen {

Xen Control User User User
Software Software Software Software
Guest OS Guest OS Guest OS Guest OS
(Xeno-Linux) (e.g.: Linux) (e.g.: FreeBSD) (e.g.: NetBSD)

— Xen-aware -~ — Xen-aware -~ — Xen-aware -~ — Xen-aware -~

. device drivers '

{ device drivers

i device drivers

i device drivers

Xen Control
Interface

Virtual CPU
e.g.: Virtual x86

Virtual Physical
Memory

Virtual Block
Devices

Virtual
Network

Hardware: SMP (x-86, Itanium or RISC), physical memory

Hardware devices e.g.: SCSI, IDE, Ethernet




Adopted Technique

Paravirtualization

@ X86 has 4 operation modes (rings)
@ Traditional OSes run on 2 rings: 0 and 3
@ 0OS/2 uses/used 4 rings

@ Hypervisor runs in ring 0

@ Operating System kernels: ring 1 ou 2

@ Privileged operations done via hypercalls
o Needs to be ported to ring 1 or 2

@ User processes: ring 3
& Runs without any modification*
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Xen Architecture

Xen Architecture characteristics

Kernel runs in ring 1 or 2

Userland runs unmodified in ring 3

Privileged operations through hypercalls
Device access done through hypercalls

Linux 2.4 Port: less than 3000 lines of code
Linux 2.6 Port did not modify any “core” files.
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Xen Architecture

Xen 3.0 roadmap

AGP in Domain 0

ACPI in Domain 0

SMP Guests

Architectures: x86_64, IA64, IBM POWER®)
Intel VT-x (Vanderpool) and AMD Pacifica
Better management tools

Network structure optimization



Hardware Access

Hardware access in Xen systems

@ Domain 0 accesses devices with “native” drivers, through
hypercalls
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Hardware Access

Hardware access in Xen systems

@ Domain 0 accesses devices with “native” drivers, through
hypercalls
@ Domain Us access virtual devices exported by Domain 0

Safe asynchronous access through shared memory
“Zero-copy” Implementation

Network: Use of regular bridging and routing techniques
Block Devices: Domain 0 exports any block device
(sda4,loop0,vg3,md2,...)

@ Access by Privileged Domain Us
@ Native access through hypercalls

¢ ¢ ¢ ¢



Xen

Isolation and Contention

Device Isolation

o "“Virtual”

o Virtual PCl Configuration Space
@ Virtual Interrupts

@ Failures don't affect other domains

@ It is safe to reboot a domain without affecting others

example

root@julia:"# Ispci
00:0a.0 Multimedia audio controller: Ensoniq 5880 AudioPCl
root@julia:”#




Supported OSes

Xen 2.0 Supported Operating Systems

Systems ported to Xen x86

Operating System Domain 0 Domain U
Linux® 2.4 v/ vV
Linux®) 2.6 Vv vV
NetBSD®) 3.0 v v
Plan9® Vv
FreeBSD® vV
OpenSolaris® Vv
Windows®) Vv
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Balloon

Dynamic memory management

Idle Linux® domain can consume as low as 4MB RAM

Maximum memory footprint configurable at run-time from
Domain 0

Better use of memory, avoiding Swap

Control under Domain 0 (xm) or Domain U
(/proc/xen /balloon)

Balloon Auto-Control
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Pausa de dominios

Pause: temporary interruption

@ Interrupts domain execution
@ Stays ready to resume
@ xm pause dominio

@ xm unpause dominio
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Pausa de dominios

Save: domain suspension

Interrupts domain execution

Saves machine state (RAM, registers) to a file
Destroys the running domain

Can be used when upgrading domain0

xm save dominio arquivo

xm restore arquivo
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Live Migration

Live Migration

Transfers a running OS to another host

“Downtime” of a few milliseconds!

Obeys bandwidth limits

Needs shared devices between source and target machines
Simple!

@ xm migrate —live —resource 70 DominioA OutroHostXen
e 70Mbit Limit
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Live Migration

Live Migration: How It Works

VM running normally on
Host A

Stage O: Pre-Migration
Active VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

¥

Stage 1: Reservation v

Initialize a container on the target host

Stage 2: Iterative Pre-copy
Enable shadow paging
Copy dirty pages in successive rounds.

Downtime
(VM Out of Service)

Stage 3: Stop and copy
Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B

¥

Stage 4: Commitment M |

VM state on Host A is released

_______________________________ *_ e e o W

VM running normally on
Host B

Stage 5: Activation Y

VM starts on Host B
Connects to local devices
Resumes normal operation
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Live Migration

Live Migration: HTTPd

@ 512kb files, 100 concurrent clients
@ Downtime: 165 msl!

Effect of Migration on Web Server Transmission Rate
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Live Migration

Live Migration: Quake 3

@ 6 clients, 64MB
@ Total transferred: 88MB (1.37x)

@ Downtimes: 50 ms and 48 ms

Packet interarrival time during Quake 3 migration

—
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Escalabilidade

Scalability

Memory Overhead per domain: 20kb
Minimal CPU time Overhead

Practical limit: memory!

PC scales well up to 100 domains approximately!

!Depending on the allocated workload
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Execution Performance

SPECint2000

Relative score to Linux

L X Vv U
SPEC INT2000 (score)
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Execution Performance

Linux build

B50

Relative score to Linux

L X Vv U L X Vv U
SPEC INT2000 (score) Linux build time (s)
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Execution Performance

Database transactions

Relative score to Linux

L X Vv U L X Vv U L X Vv U
SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s)
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Execution Performance

Web Requests

Relative score toe Linux

L X Vv U L X vV U L X Vv U L X vV U
SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s) SPEC WEB99 (score)
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Performance de Rede

MTU 1500: bulk transfer

Relative score to Linux

L * W u i X W u
Tx, MTU 1500 (Mbps) Rx, MTU 1500 (Mbps)
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Performance de Rede

MTU 500: Interactive content
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Quality of Service Management

@ Manage CPU utilization

@ Flexible

@ Schedulers

@ Round-Robin
Borrowed Virtual Time
Atropos*
Fair Borrowed Virtual Time
Simple-Earliest Deadline First



Round-Robin

Round-Robin

@ Simple sequential scheduler
@ Must not be used in production!
o Selected “sched=rrobin”

o Global Parameter
rr_slice Timeslice for each domain



BVT

BVT: Borrowed Virtual Time

@ BVT provides proportionally fair time slices for each domain

@ Experience: Heavy I/O gets penalized
Compensated by the use of “warp”

@ Default scheduler, selected with “sched=bvt"



BVT

BVT: Configuration

o Global Parameters

o ctx allow: Context Switch Allowance
Minimum time to run before a domain can be preempted

@ Domain Parameters

mcuadv Minimum Charge Unit Advance, inverse of the

warpback
warp
warpl

warpu

CPU weight

Boolean, allows warping of domains, reducing
latency

“Virtual Time" quantity a domain is able to
subtract

Maximum time a domain can run warped, 0 =
no limit

Minimum time to run unwarped before warping
again



Atropos

Atropos

@ Soft Real Time
@ Selected with “sched=atropos”
@ Domain Parameters

period Regular guaranteed period
slice Guaranteed timeslice each period cycle
latency Domain re-scheduling latency
xtratime Boolean: Can extra time be allocated?
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Overview

Overview: Implementation

@ Storage Strategy definition

© Install Operating System

© Install Xen Hypervisor

© Install userland tools

© Prepare Domain 0 kernel

@ Network Configuration

@ Virtual Machine Configuration
© Install Virtual Machine
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Installing Xen

Installing Xen Hypervisor

Build Xen - optional

Prepare custom Domain 0 kernel - optional
Install GRUB

Copy xen.gz and kernel to /boot
Configure GRUB
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Installing Xen

Configuring GRUB

/boot/grub/menu.lst - Linux

title Xen

root (hd0,1)

kernel /boot/xen.gz dom0_mem=65536

module /boot/vmlinuz-xen0 root=/dev/sda4 ro console=tty0

/grub/menu.lst - NetBSD

title Xen

root (hd0,0,a)

kernel /xen.gz dom0_mem=65536
module /netbsd

| A\
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Installing Xen

Installing userland tools

@ iproute2

@ bridge-utils (brctl)

@ Python

@ Twisted (make install-twisted on source directory)
@ Compiler toolchain

@ libcurl

@ zlib

@ IATEX and transfig for the documentation
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Installing Xen

Installing userland tools

Installing on Linux®) - tarball

# cd xen-2.0-install

# sh ./install.sh

Add “xend start” to your init scripts

Note: Most distributions already have Xen packages

| \

Installing on NetBSD®)

cd /usr/pkgsrc/sysutils/xentools20
make install
echo xend=YES >> /etc/rc.conf




Implementation
0000e0

Installing Xen

Preparing custom Linux®) kernel

@ Regular linux configuration routine

@ Linux needs Xen patches included on the source tarball

Configuring and Building Linux

From Xen source directory:
# cd linux-2.6.xx
# make ARCH=xen menuconfig

# cd ..
# make
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Installing Xen

Preparing custom NetBSD®) kernel

@ Standard configuration and build procedure

@ Does not need external patches

Configuring and building kernel

# cd /usr/src/sys/arch/i386/conf
# cp XENO MYXENO
# vi MYXENO

# cd /usr/src
# ./build.sh kernel=MYXENO
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Configuring domains

Domain Configuration

Example: /etc/xen/example

kernel = "/boot/linux-2.6-xenU"

memory = 64

name = example

cpu = -1

nics = 1

cpuweight = 0.1

vif = [ 'mac=01:23:45:67:89:AB, bridge=xen-br0’ |

disk = [ 'file:/path/test-hdal,hdal,w’,
'file: /path /test-hda2,hda2,w’ |

root = "/dev/hda2 ro"

extra = "

autorestart = True




Implementation
L o]

Installing Domains

Installing a Linux Domain

XenU installer

Bootstrap tools (ex: debootstrap, rpmstrap, yum)
QEMU

Tarballs

ROOT=/mnt/dominio installpkg
/mnt/cdrom/slackware/{a,ap,n}/*tgz
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Installing Domains

Installing a NetBSD domain

kernel = "/boot/netbsd-INSTALL_XENU"
Packages source:
CD: 'phy:/dev/cdrom,cd0d,r’, device xbd1d
ISO: 'file:/home/foo/i386cd.iso,cd0d,r' device xbd1d
Rede: Define networking parameters

Normal NetBSD install (sysinst)

Disable virtual terminals
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Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain
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Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain

sched=bvt (default)
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Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain

sched=bvt (default)

Parameters

# xm bvt_ctxallow ctxallow

# xm bvt dominio mcuadv warpback warpvalue warpl warpu
# xm bvt dominioB 20 0 0 0 0

# xm bvt dominioB 10 0 0 0 0
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Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device
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Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device

/grub/menu.lst
kernel /xen.gz dom0_mem=65536 physdev_dom0_hide=(00:0a.0)
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Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device

/grub/menu.lst

kernel /xen.gz dom0_mem=65536 physdev_dom0_hide=(00:0a.0)

/etc/xen [test
pci = [ '00,0a,00" |
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Back-End domains

Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices
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Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices

Enabling Back-end Feature

netif=yes
blkif=yes
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Back-End domains

Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices

Enabling Back-end Feature

netif=yes
blkif=yes

Using devices from other Back-Ends

disk = [ 'file:/path/test-hdal,hdal,w,dom3’ |
vif = [ 'mac=00:11:22:33:44:55:66,
bridge=xen-br3, backend=dom5’ ]
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“Post-3.0" Future

Roadmap

Balloon Auto Control
Load Balancing

Node Evacuation
Storage Subsystem
Internet Suspend Resume
Fault Tolerance

VM fork

Secure Virtualization
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