Virtualizing servers with Xen

Evaldo Gardenali

VI International Conference of Unix at UNINET

Outline

Virtualization
Xen

Features
Scalability
Performance
Quality of Service
Implementation

Future of Xen

Virtualization
[]

Overview

Why?

Support heterogeneous environments: Linux®) 2.4 e 2.6,
NetBSD®), Plan9®
FreeBSD®), OpenSolaris®

Consolidate work

Legacy Systems

Gradual Upgrade

Service Isolation

Quality of Service

Isolated testing and development
Ease of administration

Ease of relocation and migration

Virtualization
L]

Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones
\/ Groups processes in “resource containers”
%X Hard to get isolation

Virtualization
L]

Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones

\/ Groups processes in “resource containers”
%X Hard to get isolation

@ Emulation: QEMU, Bochs

\/ Portable
X Extremely slow

Virtualization
L]

Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones

\/ Groups processes in “resource containers”
%X Hard to get isolation

@ Emulation: QEMU, Bochs

\/ Portable
X Extremely slow

@ Virtualization: VMware®), VirtualPC®

v/ Runs unmodified Operating Systems
% Virtualizing x86 is inefficient

Virtualization

Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones

\/ Groups processes in “resource containers”
%X Hard to get isolation

@ Emulation: QEMU, Bochs

\/ Portable
X Extremely slow

@ Virtualization: VMware®), VirtualPC®
v/ Runs unmodified Operating Systems
% Virtualizing x86 is inefficient
@ User Mode Kernel: User Mode Linux, CoLinux

% Guest runs as a process on the host OS
% Low performance (1/O, context switches)

Virtualization

Virtualization Techniques

@ Single System Image: Ensim®), Vservers, CKRM,
Virtuozzo™, BSD®) jail(), Solaris® Zones

\/ Groups processes in “resource containers”
%X Hard to get isolation

@ Emulation: QEMU, Bochs

\/ Portable
X Extremely slow

@ Virtualization: VMware®), VirtualPC®

v/ Runs unmodified Operating Systems
% Virtualizing x86 is inefficient

@ User Mode Kernel: User Mode Linux, CoLinux

% Guest runs as a process on the host OS
% Low performance (1/O, context switches)

@ Paravirtualization: Xen®), Denali

\/ Excellent performance
% Requires port to special architecture

Virtualization
e0

Advantages of Virtualization

Advantages

For Administrators

@ Service Isolation, minimizing damages
@ Failure Isolation
@ Ease of Administration

@ Quality of Service enforcement

Virtualization
e0

Advantages of Virtualization

Advantages

For Administrators
@ Service Isolation, minimizing damages
@ Failure Isolation
@ Ease of Administration

@ Quality of Service enforcement

For Hosting providers and datacenters

o Offer “Virtual Private Server” services

@ Raise Aggregated Value

Virtualization
o]]

Advantages of Virtualization

Costs!

Purchase or rent of equipments
Rack Space

Colocation costs

Energy Consumption

Downtime

Overview

Xen architecture

Xen {

Xen Control User User User
Software Software Software Software
Guest OS Guest OS Guest OS Guest OS
(Xeno-Linux) (e.g.: Linux) (e.g.: FreeBSD) (e.g.: NetBSD)

— Xen-aware -~ — Xen-aware -~ — Xen-aware -~ — Xen-aware -~

. device drivers '

{ device drivers

i device drivers

i device drivers

Xen Control
Interface

Virtual CPU
e.g.: Virtual x86

Virtual Physical
Memory

Virtual Block
Devices

Virtual
Network

Hardware: SMP (x-86, Itanium or RISC), physical memory

Hardware devices e.g.: SCSI, IDE, Ethernet

Adopted Technique

Paravirtualization

@ X86 has 4 operation modes (rings)
@ Traditional OSes run on 2 rings: 0 and 3
@ 0OS/2 uses/used 4 rings

@ Hypervisor runs in ring 0

@ Operating System kernels: ring 1 ou 2

@ Privileged operations done via hypercalls
o Needs to be ported to ring 1 or 2

@ User processes: ring 3
& Runs without any modification*

Xen
L o]

Xen Architecture

Xen Architecture characteristics

Kernel runs in ring 1 or 2

Userland runs unmodified in ring 3

Privileged operations through hypercalls
Device access done through hypercalls

Linux 2.4 Port: less than 3000 lines of code
Linux 2.6 Port did not modify any “core” files.

Xen
oe

Xen Architecture

Xen 3.0 roadmap

AGP in Domain 0

ACPI in Domain 0

SMP Guests

Architectures: x86_64, IA64, IBM POWER®)
Intel VT-x (Vanderpool) and AMD Pacifica
Better management tools

Network structure optimization

Hardware Access

Hardware access in Xen systems

@ Domain 0 accesses devices with “native” drivers, through
hypercalls

Hardware Access

Hardware access in Xen systems

@ Domain 0 accesses devices with “native” drivers, through
hypercalls

@ Domain Us access virtual devices exported by Domain 0

Safe asynchronous access through shared memory

“Zero-copy” Implementation

Network: Use of regular bridging and routing techniques

Block Devices: Domain 0 exports any block device
(sda4,loop0,vg3,md2,...)

¢ ¢ ¢ ¢

Hardware Access

Hardware access in Xen systems

@ Domain 0 accesses devices with “native” drivers, through
hypercalls
@ Domain Us access virtual devices exported by Domain 0

Safe asynchronous access through shared memory
“Zero-copy” Implementation

Network: Use of regular bridging and routing techniques
Block Devices: Domain 0 exports any block device
(sda4,loop0,vg3,md2,...)

@ Access by Privileged Domain Us
@ Native access through hypercalls

¢ ¢ ¢ ¢

Xen

Isolation and Contention

Device Isolation

o "“Virtual”

o Virtual PCl Configuration Space
@ Virtual Interrupts

@ Failures don't affect other domains

@ It is safe to reboot a domain without affecting others

example

root@julia:"# Ispci
00:0a.0 Multimedia audio controller: Ensoniq 5880 AudioPCl
root@julia:”#

Supported OSes

Xen 2.0 Supported Operating Systems

Systems ported to Xen x86

Operating System Domain 0 Domain U
Linux® 2.4 v/ vV
Linux®) 2.6 Vv vV
NetBSD®) 3.0 v v
Plan9® Vv
FreeBSD® vV
OpenSolaris® Vv
Windows®) Vv

Features
[]

Balloon

Dynamic memory management

Idle Linux® domain can consume as low as 4MB RAM

Maximum memory footprint configurable at run-time from
Domain 0

Better use of memory, avoiding Swap

Control under Domain 0 (xm) or Domain U
(/proc/xen /balloon)

Balloon Auto-Control

Features
[le]

Pausa de dominios

Pause: temporary interruption

@ Interrupts domain execution
@ Stays ready to resume
@ xm pause dominio

@ xm unpause dominio

Features
o]]

Pausa de dominios

Save: domain suspension

Interrupts domain execution

Saves machine state (RAM, registers) to a file
Destroys the running domain

Can be used when upgrading domain0

xm save dominio arquivo

xm restore arquivo

Features
@000

Live Migration

Live Migration

Transfers a running OS to another host

“Downtime” of a few milliseconds!

Obeys bandwidth limits

Needs shared devices between source and target machines
Simple!

@ xm migrate —live —resource 70 DominioA OutroHostXen
e 70Mbit Limit

Features

[e] le]e]

Live Migration

Live Migration: How It Works

VM running normally on
Host A

Stage O: Pre-Migration
Active VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

¥

Stage 1: Reservation v

Initialize a container on the target host

Stage 2: Iterative Pre-copy
Enable shadow paging
Copy dirty pages in successive rounds.

Downtime
(VM Out of Service)

Stage 3: Stop and copy
Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B

¥

Stage 4: Commitment M |

VM state on Host A is released

_______________________________ *_ e e o W

VM running normally on
Host B

Stage 5: Activation Y

VM starts on Host B
Connects to local devices
Resumes normal operation

Features
[e]e] e}

Live Migration

Live Migration: HTTPd

@ 512kb files, 100 concurrent clients
@ Downtime: 165 msl!

Effect of Migration on Web Server Transmission Rate
§70 Mbltisec 1t precopy, 62 secs Turthey n:n:ﬁunu
" TeSMblse -8 sacs

Throughput {Mbit/sac)

400 .
—{ }— 186ms total downtime
200 :
512Kb Mies © Samphs over 100ms
100 concurrent clients © Sample over 500ms
0 | | | | | | | | 1 tl I | |
0 10 20 8o 40 50 80 70 B 80 100 118 120 130

Elapsed time (secs)

Features
[e]ele]]

Live Migration

Live Migration: Quake 3

@ 6 clients, 64MB
@ Total transferred: 88MB (1.37x)

@ Downtimes: 50 ms and 48 ms

Packet interarrival time during Quake 3 migration

—
w012 - » ™ .
b3 5 & s &
2 01 8]
£ bt £} ¥
@ B H] £
£008 g E g E
Eo0s 2z 13 =] 8
e A P PR AR o M AP i P PN pod
o
=0.04
-
]
0.02
f:
o 0 I | I | I | I
¢ 10 20 30 4 50 80 70

Elapsed time (secs)

Escalabilidade

Scalability

Memory Overhead per domain: 20kb
Minimal CPU time Overhead

Practical limit: memory!

PC scales well up to 100 domains approximately!

!Depending on the allocated workload

Performance
@000

Execution Performance

SPECint2000

Relative score to Linux

L X Vv U
SPEC INT2000 (score)

Performance
[o] le]e}

Execution Performance

Linux build

B50

Relative score to Linux

L X Vv U L X Vv U
SPEC INT2000 (score) Linux build time (s)

Performance
[e]e] T}

Execution Performance

Database transactions

Relative score to Linux

L X Vv U L X Vv U L X Vv U
SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s)

Performance
[e]ele]]

Execution Performance

Web Requests

Relative score toe Linux

L X Vv U L X vV U L X Vv U L X vV U
SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s) SPEC WEB99 (score)

Performance
L o)

Performance de Rede

MTU 1500: bulk transfer

Relative score to Linux

L * W u i X W u
Tx, MTU 1500 (Mbps) Rx, MTU 1500 (Mbps)

Performance
oe

Performance de Rede

MTU 500: Interactive content

£07
£G7|
B37|
597
602
544

0.9
5 0.8
£
= 07
2
v 06
3]
B 05
3
2 04
=
]
&=

nB7

L k4 W u L X W u L * W u L X W u
Tx, MTU 1500 (Mbps) Rx, MTU 1500 (Mbps) Tx, MTU 500 (Mbps) Rx, MTU 500 (Mbps)

Overview

Quality of Service Management

@ Manage CPU utilization

@ Flexible

@ Schedulers

@ Round-Robin
Borrowed Virtual Time
Atropos*
Fair Borrowed Virtual Time
Simple-Earliest Deadline First

Round-Robin

Round-Robin

@ Simple sequential scheduler
@ Must not be used in production!
o Selected “sched=rrobin”

o Global Parameter
rr_slice Timeslice for each domain

BVT

BVT: Borrowed Virtual Time

@ BVT provides proportionally fair time slices for each domain

@ Experience: Heavy I/O gets penalized
Compensated by the use of “warp”

@ Default scheduler, selected with “sched=bvt"

BVT

BVT: Configuration

o Global Parameters

o ctx allow: Context Switch Allowance
Minimum time to run before a domain can be preempted

@ Domain Parameters

mcuadv Minimum Charge Unit Advance, inverse of the

warpback
warp
warpl

warpu

CPU weight

Boolean, allows warping of domains, reducing
latency

“Virtual Time" quantity a domain is able to
subtract

Maximum time a domain can run warped, 0 =
no limit

Minimum time to run unwarped before warping
again

Atropos

Atropos

@ Soft Real Time
@ Selected with “sched=atropos”
@ Domain Parameters

period Regular guaranteed period
slice Guaranteed timeslice each period cycle
latency Domain re-scheduling latency
xtratime Boolean: Can extra time be allocated?

Implementation
o

Overview

Overview: Implementation

@ Storage Strategy definition

© Install Operating System

© Install Xen Hypervisor

© Install userland tools

© Prepare Domain 0 kernel

@ Network Configuration

@ Virtual Machine Configuration
© Install Virtual Machine

Implementation
@00000

Installing Xen

Installing Xen Hypervisor

Build Xen - optional

Prepare custom Domain 0 kernel - optional
Install GRUB

Copy xen.gz and kernel to /boot
Configure GRUB

Implementation
(o] lelelele)

Installing Xen

Configuring GRUB

/boot/grub/menu.lst - Linux

title Xen

root (hd0,1)

kernel /boot/xen.gz dom0_mem=65536

module /boot/vmlinuz-xen0 root=/dev/sda4 ro console=tty0

/grub/menu.lst - NetBSD

title Xen

root (hd0,0,a)

kernel /xen.gz dom0_mem=65536
module /netbsd

| A\

Implementation
[e]e] lele]e)

Installing Xen

Installing userland tools

@ iproute2

@ bridge-utils (brctl)

@ Python

@ Twisted (make install-twisted on source directory)
@ Compiler toolchain

@ libcurl

@ zlib

@ IATEX and transfig for the documentation

Implementation
000e00

Installing Xen

Installing userland tools

Installing on Linux®) - tarball

cd xen-2.0-install

sh ./install.sh

Add “xend start” to your init scripts

Note: Most distributions already have Xen packages

| \

Installing on NetBSD®)

cd /usr/pkgsrc/sysutils/xentools20
make install
echo xend=YES >> /etc/rc.conf

Implementation
0000e0

Installing Xen

Preparing custom Linux®) kernel

@ Regular linux configuration routine

@ Linux needs Xen patches included on the source tarball

Configuring and Building Linux

From Xen source directory:
cd linux-2.6.xx
make ARCH=xen menuconfig

cd ..
make

Implementation
00000e

Installing Xen

Preparing custom NetBSD®) kernel

@ Standard configuration and build procedure

@ Does not need external patches

Configuring and building kernel

cd /usr/src/sys/arch/i386/conf
cp XENO MYXENO
vi MYXENO

cd /usr/src
./build.sh kernel=MYXENO

Implementation
[]

Configuring domains

Domain Configuration

Example: /etc/xen/example

kernel = "/boot/linux-2.6-xenU"

memory = 64

name = example

cpu = -1

nics = 1

cpuweight = 0.1

vif = ['mac=01:23:45:67:89:AB, bridge=xen-br0’ |

disk = ['file:/path/test-hdal,hdal,w’,
'file: /path /test-hda2,hda2,w’ |

root = "/dev/hda2 ro"

extra = "

autorestart = True

Implementation
L o]

Installing Domains

Installing a Linux Domain

XenU installer

Bootstrap tools (ex: debootstrap, rpmstrap, yum)
QEMU

Tarballs

ROOT=/mnt/dominio installpkg
/mnt/cdrom/slackware/{a,ap,n}/*tgz

Implementation
oe

Installing Domains

Installing a NetBSD domain

kernel = "/boot/netbsd-INSTALL_XENU"
Packages source:
CD: 'phy:/dev/cdrom,cd0d,r’, device xbd1d
ISO: 'file:/home/foo/i386cd.iso,cd0d,r' device xbd1d
Rede: Define networking parameters

Normal NetBSD install (sysinst)

Disable virtual terminals

Implementation
[]

Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain

Implementation
[]

Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain

sched=bvt (default)

Implementation
[]

Definindo QoS

Defining QoS

@ Define Scheduler
@ Define Global Parameters

@ Define individual parameters for each domain

sched=bvt (default)

Parameters

xm bvt_ctxallow ctxallow

xm bvt dominio mcuadv warpback warpvalue warpl warpu
xm bvt dominioB 20 0 0 0 0

xm bvt dominioB 10 0 0 0 0

Implementation
]

Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device

Implementation
]

Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device

/grub/menu.lst
kernel /xen.gz dom0_mem=65536 physdev_dom0_hide=(00:0a.0)

Implementation
]

Delegating hardware to domains

Delegating hardware to domains

@ Hide the device from Domain 0
@ Declare device on Domain U configuration

@ Use a domU kernel with support for PCl and your device

/grub/menu.lst

kernel /xen.gz dom0_mem=65536 physdev_dom0_hide=(00:0a.0)

/etc/xen [test
pci = ['00,0a,00" |

Implementation
[]

Back-End domains

Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices

Implementation

Back-End domains

Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices

Enabling Back-end Feature

netif=yes
blkif=yes

Implementation
[]

Back-End domains

Back-End domains

@ Device “Servers”

o Block Devices
o Network Devices

Enabling Back-end Feature

netif=yes
blkif=yes

Using devices from other Back-Ends

disk = ['file:/path/test-hdal,hdal,w,dom3’ |
vif = ['mac=00:11:22:33:44:55:66,
bridge=xen-br3, backend=dom5’]

Future
[]

“Post-3.0" Future

Roadmap

Balloon Auto Control
Load Balancing

Node Evacuation
Storage Subsystem
Internet Suspend Resume
Fault Tolerance

VM fork

Secure Virtualization

Some References

http://www.cl.cam.ac.uk/Research/SRG/netos/xen
http://www.xensource.com/

http://netbsd.org/Ports/xen/
http://www.opensolaris.org/os/community /xen/

http: //www.freesoftwaremagazine.com /free_issues/issue 05 /focus-xen/
http://www.kernelthread.com/publications/virtualization/
http://www.fedoraproject.org/wiki/FedoraXenQuickstart
http://citeseer.ist.psu.edu/407687.html

http://www.cl.cam.ac.uk/Research/SRG/netos/xen
http://www.xensource.com/
http://netbsd.org/Ports/xen/
http://www.opensolaris.org/os/community/xen/
http://www.freesoftwaremagazine.com/free_issues/issue_05/focus-xen/
http://www.kernelthread.com/publications/virtualization/
http://www.fedoraproject.org/wiki/FedoraXenQuickstart
http://citeseer.ist.psu.edu/407687.html

Evaldo Gardenali

evaldo@gardenali.biz

Copyright(©) 2005, Evaldo Gardenali evaldo@gardenali.biz

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th
Floor, San Francisco, California, 94105, USA.

Linux® is a registered trademark of Linus Torvalds in the United States and in other countries, POWER®) is a
registered trademark of International Business Machines Corporation, NetBSD®) is a registered trademark of
NetBSD Foundation, FreeBSD®) is a registered trademark of FreeBSD Foundation, Solaris® e OpenSolaris@® are
registered trademarks of Sun Microsystems Inc in the United States and in other countries, Windows®) is a
registered trademark of Microsoft Corporation, VMware ™ is a registered trademark of VMware, Inc., Plan9® is a
registered trademark of Lucent Technologies Inc., Xen™ s a registered trademark of XenSource, Inc., Ensim®) is
a registered trademark of Ensim Corporation, Virtuozzo™™ is a registered trademark of SWsoft Corporation in the
United States and in other countries, BSD®) is a registered trademark of Berkeley Software Design, Inc.

Feito com IATEX2,

mailto:evaldo@gardenali.biz
http://creativecommons.org/licenses/by/2.5/

	Virtualization
	Overview
	Virtualization Techniques
	Advantages of Virtualization

	Xen
	Overview
	Adopted Technique
	Xen Architecture
	Hardware Access
	Isolation and Contention
	Supported OSes

	Features
	Balloon
	Pausa de domínios
	Live Migration

	Escalabilidade
	Performance
	Execution Performance
	Performance de Rede

	QoS
	Overview
	Round-Robin
	BVT
	Atropos

	Implementation
	Overview
	Installing Xen
	Configuring domains
	Installing Domains
	Definindo QoS
	Delegating hardware to domains
	Back-End domains

	Future
	``Post-3.0'' Future

	

